
AI/ML-Driven Query
Optimization Using

Balsa and LEON
Stefan Keller, FH OST Rapperswil

Thu. 5 November 2024, 19:00 – ca. 21:00

Hosted by SwissPUG

VSHNtower Zürich (Room Sponsor VSHN)

Source: https://github.com/Thisislegit/LeonProject/blob/master/Figs/leon.jpg

AI/ML-Driven Query Optimization Using
Balsa and LEON

• Presented by
• Prof. Stefan Keller, Leiter Institut für Software

• Ostschweizer Fachhochschule, Campus Rapperswil

• ost.ch/ifs

• Hosted by
• Swiss PostgreSQL Users Group (SwissPUG)

• swisspug.ch

• Sponsored by
• VSHN AG Zurich Office

• vshn.ch

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 2

Content Overview

AI/ML-Driven Query Optimization Using Balsa and LEON

1. What is Optimization and Tuning in Databases?

2. Optimization and Tuning Tools for PostgreSQL

3. Introduction to Query Optimization

4. LEON and Balsa

5. Comparison and Outlook

Q & A and “Ask-us-Anything”

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 3

This Presentation …

… is based on own preliminary short studies.

• The goals of this study were
• to get to know the possibilities and limits of AI/ML query optimization with

PostgreSQL,
• esp. with regard to next seminar in our Computer and Data Science Master’s 2025
• (and also for my own learning about PostgreSQL and AI)

• The goal of this study was not
• to focus on monitoring for db admins, nor database tuning in general,
• nor to get the most out of the current PostgreSQL (e.g. with LEON and Balsa),
• nor to be an exhaustive overview of the PG tools ecosystem (→ feedback welcome!)

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 4

The Problem

• No automation: DBMS tuning and query optimization traditionally
require manual intervention and decades of expertise.

• Lack of DB statistics: Maintaining full-featured statistics in the
system catalog on user data on an ongoing basis is impractical due
to computational overhead.

• Unmatched defaults: PostgreSQL is a strong candidate for tuning
because it comes configured "like a toaster controller".

• Complexity: As DBMSs evolve, it becomes increasingly difficult for
human experts to anticipate their complexity.

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 5

The Need and the Opportunities

• The growing needs:

• DB-as-a-Service (cloud) providers have amplified issues

• PostgreSQL being the "database of choice" (Source: db-engines 2024,
Stack Overflow Developer Survey 2024) the user base is growing

• The emerging opportunity:

• Artficial Intelligence and Machine Learning (AI/ML) to implement
AI/ML-based tuners and optimizers!

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 6

1. What is Optimization and
Tuning in Databases?

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 7

What is optimization and tuning in
Databases?
• Optimization is a subset of database (DBMS) tuning

• While optimization focuses typically on queries, tuning addresses the performance of the
entire database system, including hardware, software, and configuration settings.

• Optimization in databases
• Process of improving query performance.
• Uses algorithms to determine the most efficient way to execute queries (optimizer).
• Minimizes response time, CPU usage, and I/O operations.
• Includes techniques like index selection, query rewriting, and join optimization.

• Tuning in databases
• Fine-tuning the database settings to enhance performance.
• Involves adjusting parameters, memory allocation, and hardware settings.
• Includes optimizing schema design and partitioning.
• Ensures efficient resource utilization and scalability.

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 8

What are tuning options in PG?

10 options for tuning a database like PG - starting with the plain

means of configuration and with options that don't require altering the

schema or data:

• 1. Statistics Updating and Database Monitoring

• Regularly vacuum tables and update statistics to optimize space usage and
query planner performance.
Tools: PostgreSQL's VACUUM, ANALYZE, autovacuum.

• Monitor database performance and logs to identify slow queries and resource
bottlenecks.

• Tools: pg_stat_statements, pgBadger, pg_stat_activity. Extensions: PoWA.

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 9

What can be tuned in PostgreSQL?

• 2. Query Optimization:
• Refactor inefficient queries, reduce complexity, and avoid “SELECT *”.
• Just-in-time (JIT) compilation: Process of turning some form of interpreted program

evaluation into a native program, at run-time.
• Tools: EXPLAIN ANALYZE, pg_stat_statements.

• 3. Index Optimization:
• Add indexes to frequently queried columns, especially for WHERE, JOIN, or ORDER BY

clauses.
• Tools: CREATE INDEX, pg_stat_user_indexes.

• 4. Database Configuration Tuning:
• Adjust server parameters (with GUC or in postgresql.conf file) such as shared_buffers,

work_mem, and maintenance_work_mem for performance tuning,
effective_io_concurrency, parallel_query.

• Tools: pgTune, pg_stat_activity, pg_stat_statements.

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 10

What can be tuned in PostgreSQL?

• 5. Planner Hints:
• Use GUC to guide the optimizer for better query plans when automatic optimization

isn't effective. Extend PostgreSQL to planner hints.
• Tools: PostgreSQL's enable_* options (e.g., enable_seqscan, enable_indexscan).
• Extensions: pg_hint_plan, DBtune, LEON.

• 6. Parallel Query Execution:
• Enable and configure parallel query execution to distribute the workload across

multiple CPU cores.
• Tools: PostgreSQL's max_parallel_workers_per_gather, parallel_setup_cost.

• 7. Partitioning:
• Divide large tables into smaller, more manageable parts.
• Tools: Native partitioning in PostgreSQL

5. November 2024 | SwissPUG
AI/ML-Driven Query Optimization Using Balsa and LEON |

Stefan Keller
11

What can be tuned in PostgreSQL?

• 8. Connection Pooling:
• Reuse database connections to reduce connection overhead, improving

performance.
• Tools: PgBouncer, pgpool-II.

• 9. Caching:
• Store frequently queried data in memory to reduce load on the database.
• Tools: PostgreSQL's built-in shared_buffers, pg_buffercache extension,

external tools like pgCache or Redis.

• 10. Hardware Resource Scaling:
• Improve hardware resources with more CPU, RAM, or faster storage (SSD).
• Tools: None specific to PostgreSQL but relevant for infrastructure

configuration.

5. November 2024 | SwissPUG
AI/ML-Driven Query Optimization Using Balsa and LEON |

Stefan Keller
12

Views, modules and extensions

PostgreSQL views, modules and extensions mentioned here:

• Views (from PostgreSQL system catalog):
• pg_stats, pg_stat_activity, pg_stat_database.

• Contrib. Modules (as part of PostgreSQL delivery):
• pg_stat_statements, pg_prewarm, …

• Extensions (as modules «external» to PostgreSQL delivery):
• «Readers»: pg_qualstats, pg_linux_stats, pg_stat_kcache

• «Writers»: pg_hint_plan

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 13

2. Optimization and Tuning
Tools for PostgreSQL

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 14

Tuning tools for PostgreSQL («.com»)

• What are commercial tuning tools for PostgreSQL (with focus on tuning rather than query
optimization)?

• EDB Postgres Tuner
• This extension provides safe recommendations for PG settings (e.g. memory) that maximize the use

of available resources (…?)

• https://www.enterprisedb.com/docs/pg_extensions/pg_tuner/

• DBtune
• AI-powered optimizer which tunes PG database configuration.
• https://www.dbtune.com/

• OtterTune
• A database tuning service for PG and MySQL start-up out of Carnegie Mellon University.

• Ended 2024 saying "we got screwed over by a Private Equity PostgreSQL company on an acquisition
offer.«

• https://ottertune.com/

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 15

https://www.enterprisedb.com/docs/pg_extensions/pg_tuner/
https://www.dbtune.com/
https://ottertune.com/

Tuning tools for PostgreSQL (FOSS)

• GPTuner:
• A documentation-text-reading database tuning system using Bayesian Optimization guided by GPT models for PG and MySQL. No

license indicated. Last commit Aug. 2024, 70 stars, 3 watching, 17 forks, written in Python. https://github.com/SolidLao/GPTuner

• UDO "Universal Database Optimization"
• Utilizes Deep Reinforcement Learning to optimize transactions, index selections and database system parameters for PG and

MySQL. MIT license. Last commit March 2024, 70 stars, 3 watching, 17 forks, written in Python. https://github.com/jxiw/UDO

• DB-BERT:
• A documentation-text-reading AI-driven tool that utilizes Reinforcement Learning and GenAI to optimize PG configurations,

enhancing performance by analyzing workload patterns. Apache License 2.0. Last commit Aug. 2023, 56 stars, 4 watching, 13 forks,
written mainly in Python. https://github.com/itrummer/dbbert

• pg_tuner:
• An automated PG database parameter tuning tool that utilizes Bayesian Optimization techniques. It simulates realistic workloads

and captures comprehensive statistics to optimize database configurations. By Hironobu Suzuki; uses pg_linux_stats. No license
(PostgreSQL license?). Last commit Aug. 2024, 37 stars, 1 watching, 1 fork, written in Python. https://github.com/s-
hironobu/pg_tuner

• AutoDBA:
• A - yet to be released - AI agent designed to manage PG databases by ensuring reliability, efficiency, scalability, and security. It

connects to existing PostgreSQL databases and takes necessary actions to maintain optimal performance. Apache-2.0 license. Last
commit Nov. 2024, 11 stars, 2 watching, 0 forks, written mainly in Go. https://github.com/crystaldb/autodba

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 16

https://github.com/SolidLao/GPTuner
https://github.com/jxiw/UDO
https://github.com/itrummer/dbbert
https://github.com/s-hironobu/pg_tuner
https://github.com/s-hironobu/pg_tuner
https://github.com/crystaldb/autodba

Tuning tools for PostgreSQL (FOSS):
Draft evaluation
1. GPTuner: Best overall for features and active maintenance, advanced

optimization, but complex installation.

2. UDO: Comprehensive optimization features, well-documented, moderate
community engagement, but complex installation.

3. DB-BERT: Innovative NLP-driven features, good maintenance, but
requires complex installation.

4. pg_tuner: Well-documented, stable and easiest to install, but
 lacks advanced features and community engagement.

5. AutoDBA: Promising goals, minimal dependencies, simple installation,
some community engagement but currently monitoring only, lacking
optimization (AI agent) and only working on AWS RDS PostgreSQL.

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 17

Optimization tools for PostgreSQL
(FOSS)
• LEON:

• An ML-based framework for enhancing database query optimization by exploring execution plan spaces. Uses
pg_stat_statements. License PostgreSQL. Last commit May 2023, 11 stars, 2 watching, 1 fork, written in Python.
https://github.com/Thisislegit/LeonProject

• AQO (Adaptive Query Optimizer):
• A query optimizer for PG that improves plan generation based on past query performance. Uses

pg_stat_statements. License AGPL 3.0. Last commit Oct. 2024. 432 stars, 22 watching, 43 forks, written in C and
PL/pgSQL. https://github.com/postgrespro/aqo

• pg_plan_advsr:
• Suggests improved PG query plans using learned optimizations. Uses pg_stat_statements, pg_hint_plan and

pg_qualstats. No license (PostgreSQL?). Last commit: May 2024. 99 stars, 18 watching, 12 forks, written in C.
https://github.com/ossc-db/pg_plan_advsr

• Not considered
• IndexAdvisor (Greenplum), PgCuckoo, Peloton, AutoTune.

• Log analysis tools, like PoWA «PostgreSQL Workload Analyzer»: License PostgreSQL. Uses pg_stat_statements,
pg_qualstats, and optionally pg_stat_kcache and hypopg. Last commit Oct. 2024. 770 stars, 37 watching, 57 forks,
written in Python. https://github.com/powa-team/powa or pgBadger (Perl) https://github.com/darold/pgbadger/

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 18

https://github.com/Thisislegit/LeonProject
https://github.com/postgrespro/aqo
https://github.com/ossc-db/pg_plan_advsr
https://github.com/powa-team/powa
https://github.com/darold/pgbadger/

Optimization tools for PostgreSQL
(FOSS): Draft evaluation

1. LEON: Promising features but lacks active

development, community support and documentation.

2. AQO: Adaptive and useful for optimization, but requires

familiarity with PG internals for effective use.

3. pg_plan_advsr: Simple and helpful for advising better query

plans but low community involvement and sporadic

updates.

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 19

Tuning and query optimization goals and
respective open source tool availability
• Optimize resource usage of CPU, memory, and disk I/O.

• High availability: GPTuner, pg_tuner and LEON
(besides PGTune and PGConfigurator).

• Improve throughput/performance by increasing the number of
transactions processed.
• Medium availability: GPTuner and LEON, pg_plan_advsr.

• Reduce latency by minimizing response time for read/write queries.
• Medium availability: GPTuner, DB-BERT and LEON, AQO.

• Improve overall system efficiency, including DB balancing.
• Low availability: Besides AutoDBA for promised above goals

(and besides PoWA for workload analysis).

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 20

3. Introduction to Query
Optimization

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 21

What are Query Optimizers and where
they are used?

• What is a Query Optimizer?

• A query optimizer is a vital component of a database management
system that automatically determines the most efficient way to
execute a SQL query.

• What is Query Optimization?

• Query optimization is the process of finding the best execution
strategy—a plan or method to process the data—for a given SQL query,
thereby making better use of available resources.

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 22

What are Query Optimizers and where
they are used? (cont.)

• Where does this fit in?

• This optimization process happens before any data is retrieved and
results in an optimal query execution.

• How is this achieved?

• It involves analyzing different query execution plans and choosing the
most efficient one based on criteria like execution time, resource
usage, data volume, index disk I/O.

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 23

How the Query Optimizer Works

• A Database Engine contains two major components:

• Storage engine
• Reads the data between the disk and memory in a manner that optimizes

concurrency while maintaining data integrity

• Query processor
• accepts all queries submitted to SQL Server, devises a plan for their optimal

execution, and then executes the plan and delivers the required results

• the first job of the query processor is to devise a plan (best possible)

• second job is to execute the query according to that plan

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 24

How the Query Optimizer Works

1. Parsing and binding

the query is parsed and bound

2. Query optimization

generation of possible execution plans

cost-assessment for each plan

3. Query execution, plan caching

query is executed by query engine

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 25

Generating Candidate Execution Plans

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 26

Search Space Definition

- the Query Optimizer defines all possible execution plans for a query

Transformation Rules and Heuristics

- candidate plans are generated using transformation rules and

- heuristics to reduce the number of possibilities.

Memo Storage

- plans are temporarily stored in the Memo structure during
optimization

Assessing the Cost of Each Plan

Cardinality Estimation

- the optimizer estimates the number of records processed by each

operator

Resource Estimation

- each operator’s cost in terms of CPU, I/O, and memory is calculated

Total Plan Cost

- the cost of all operators is aggregated to estimate the total plan cost

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 27

Query Execution and Plan Caching

Execution Engine

- the selected execution plan is passed to the execution engine for

retrieving data

Plan Cache

- plans may be cached for reuse, avoiding the need for re-optimization

Plan Invalidations

- changes in database structure or significant data modifications can

invalidate cached plans

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 28

Hinting

Directing Index Usage

- hints can force the Query Optimizer to use a specific index

Forcing Join Algorithms: Specific join algorithms (e.g., nested loop or

hash join) can be enforced using hints

Providing a Plan: Users can provide a complete execution plan in XML

format to be used directly.

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 29

4. LEON and Balsa

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 30

LEON

• “LEarned Optimizer for query plaNs” (LEON)

• A hybrid approach that combines machine learning-based

techniques with “rule-based” expert knowledge

• Uses a contextual pairwise ranking objective instead of regression,

focusing on ranking execution history

• Comes as PostgreSQL Extension, not pre-compiled

• Academic project based on Balsa (see next)

• Repo: https://github.com/Thisislegit/LeonProject

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 31

https://github.com/Thisislegit/LeonProject

BALSA

• “Bayesian Active Learning for Self-Adaptation” (BALSA)

• Approach that uses deep reinforcement learning to optimize
database queries without relying on expert-crafted optimizers

• Custom C Program using the pg_hint_plan extension; so you need
the source code of PostgreSQL, then compile PostgreSQL with
BALSA and pg_hint_plan with make.

• Academic project which uses PostgreSQL

• Balsa is based on Bao

• Repo: https://github.com/balsa-project/balsa

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 32

https://github.com/balsa-project/balsa

Where Balsa comes in?

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 33

Where LEON comes in?

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 34

Balsa Core Concept

• Leveraging reinforcement learning (RL)
• Balsa leverages RL to optimize queries by interacting with the database and

continuously learning from the outcomes of its actions
• dynamic learning loop to evaluate for best strategy

• Learning without Experts
• unlike traditional methods, Balsa learns to optimize queries without relying on

existing expert optimizers
• starts from no prior knowledge and gradually improves as it processes more

queries
• avoid inefficient query plans by receiving feedback in the form of execution

latencies
• this makes Balsa more adaptable than traditional optimizers and can lead to

finding better execution paths without relying on fixed rules or human input

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 35

Balsa Core Concept (cont.)

• Adaptability to the DB usage

• reinforcement learning enables the optimizer to handle unexpected
workloads or changes in database performance

• particularly effective for dynamic environments

• continuous learning loop ensures that Balsa adapts to real-time
conditions

• allows it to generalize its learnings, improving its ability to optimize
unseen queries as it develops a more complete understanding of the
database

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 36

Balsa Core Concept (cont.)

• Avoiding Slow Plans

• Balsa first learns in simulation, avoiding bad query plans without real
execution

• it refines its approach by running queries in the actual database,
capturing system specifics

• safe exploration ensures slow plans are limited using timeouts and
execution caps

• the system narrows its focus to the best plans over time

• this two-phase learning makes Balsa efficient and safe while
optimizing queries

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 37

Balsa Core Concept (cont.)

• Performance Against Expert Optimizers

• Balsa matches or outperforms expert-built optimizers like PostgreSQL
in just a few hours of training

• on the JOB benchmark, it achieved up to 2.8x faster query execution

• unlike human-built systems, Balsa learns autonomously, cutting down
development time and cost

• it adapts to new queries, improving its performance over time

• this shows Balsa's potential to automate query optimization for diverse
databases

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 38

Balsa Core Concept (cont. - fin)

• Future Impact of Learned Query Optimizers

• Balsa demonstrates the potential for fully automated query optimizers

• it could reduce the need for manual fine-tuning in new database
systems

• Balsa adapts to changing workloads, making it suitable for dynamic
environments

• future optimizers could adjust strategies based on real-time feedback

• Balsa’s success may lead to more efficient, AI-driven optimizers in the
future

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 39

LEON Core Concept

• ML-Aided Approaches

• LEON leverages machine learning to aid traditional optimizers instead
of replacing them

• it combines ML techniques with the existing knowledge of expert
optimizers to achieve efficient, self-adjusting query planning

• LEON avoids the cold-start problem seen in ML-replaced approaches
by starting with knowledge from traditional optimizers

• this hybrid approach makes LEON both adaptive and practical for real-
world database environments

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 40

LEON Core Concept (cont.)

• Aid, Not Replace, Expert Optimizers
• ML methods alone struggle with the complexities of databases and

cannot replace years of expert-crafted optimization logic

• LEON uses ML to supplement traditional optimizers by improving
aspects like cost estimation and plan search

• traditional optimizers hold crucial domain knowledge, such as query
transformation rules, that ML models cannot easily learn

• LEON enhances the cost model by integrating ML where it performs
best: adjusting performance for specific workloads

• by combining both systems, LEON avoids the inefficiencies that occur
when ML models operate in isolation

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 41

LEON Core Concept (cont.)

• Pairwise Ranking for Query Plans

• uses pairwise ranking to compare query execution plans

• focuses on ranking the relative performance of query plans rather than
predicting their exact costs, reducing errors in prediction

• this ranking approach improves the selection of execution plans by
prioritizing the top-performing ones based on the database context

• learns through feedback by ranking plan pairs, ensuring that only the
most promising plans are explored during optimization

• ranking system provides LEON with faster convergence and better
accuracy compared to absolute value predictions

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 42

LEON Core Concept (cont.)

• Plan Exploration and Safe Pruning

• introduces a robust exploration strategy to avoid getting stuck

• it balances exploration and exploitation, focusing more on high-ranked
plans while also exploring uncertain plans to correct errors

• incorporates uncertainty-based exploration, using feedback to guide
the optimizer towards better plans while

• it safely prunes suboptimal plans during plan search by leveraging ML
to reduce redundant calculations, improving optimization efficiency

• this pruning ensures that only high-quality plans are retained, leading to
faster execution times and reduced computation overhead

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 43

LEON Core Concept (cont.)

• LEON’s Performance vs. Traditional Optimizers

• consistently outperforms traditional optimizers like PostgreSQL in
latency performance, achieving up to 1.57x speedup

• extensive testing shows LEON surpasses both ML-replaced methods
and expert systems, especially in scenarios involving complex queries

• the hybrid approach reduces query regression

• maintains better overall stability, avoiding the performance fluctuations
common in other learning-based optimizers

• its ability to learn and adapt quickly ensures long-term performance
gains even as workloads evolve

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 44

LEON Core Concept (cont.)

• Training Efficiency and Scalability
• achieves significant improvements in training efficiency, often

converging faster than other ML models or traditional optimizers

• it leverages existing expert knowledge, allowing it to perform well even
during the early stages of training with minimal data

• compared to Balsa, LEON demonstrates faster convergence, lower
variance, and superior performance after a few hours of training

• adaptability is evident in dynamic workloads, where it adjusts
seamlessly to new queries and workloads

• this makes LEON ideal for environments where database queries and
workloads are constantly changing

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 45

LEON Core Concept (cont.)

• Future Impact of ML-Aided Optimizers

• hybrid approach could become a new standard for database systems

• its success suggests that future query optimizers will likely continue to
blend traditional expertise with machine learning for better results

• the ML-aided approach ensures that optimizers can adjust to specific
datasets and workloads without constant manual fine-tuning

• this could lead to broader adoption in systems like PostgreSQL, where
traditional optimizers can benefit from self-adjusting capabilities

• the future of query optimization will likely involve deeper integration of
ML to enhance, rather than replace, existing database tools

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 46

5. Comparison and Outlook

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 47

Comparison: Balsa vs. LEON

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 48

Are AI/ML-based Optimizers a Solution?

• Remember: The problems of complexity and uncertainty remain:
• There's no absolute "best plan" possible because exhaustive search is

impractical for real-world databases-aside from the lack of statistics.

• Enter ML-based optimizers - but
• Overhead / performance problem: Integrating ML into query optimizers

introduces overhead in terms of plan evaluation and model training.

• Lack of maturity (training data): We requires more training data.

• Lack of reliability: Current ML-based optimizers suffer from "graceful
degradation" - the inability to indicate when they are failing.

• Lack of integration to be used “out-of-the box”

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 49

Evolution of Query Optimization

• Past(?)
• Manual query optimization

• Current situation
• Query monitoring including visualization

• Heuristic, hard-coded optimization generators

• Hybrid optimizers, combining ML with expert systems, towards self-adjusting optimization

• Optimizers preferring relative ranking plans over predicting exact costs

• Near future
• Adapting to dynamic workloads: Real-time learning to handle changing query patterns

• Smart pruning: Efficient search space exploration to minimize overhead

• Stability and convergence: More stable optimizers with faster learning

• Further Future
• Seamless integration: Enhancing ML-based optimizers within systems

• Self-improving, autonomous query optimization

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 50

Discussion

Final thought:

• Lack of cooperation of DB-as-a-Service
providers and experts?

• “Shame on anyone who thinks evil of it”: Do
they profit from lack of optimization?

Next events:

• 26+27 Juni 2025: Swiss PGDay 2025 (en+de),
Rapperswil. www.pgday.ch

• Others: see SwissPUG, www.swisspug.ch

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 51

http://www.pgday.ch/
http://www.swisspug.ch/

APPENDIX: PostgreSQL params. for tuning

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 52

max_connections
Too many connections can overload resources, tuning this optimizes resource allocation.
shared_buffers
Larger buffers reduce disk I/O by caching frequently accessed data, speeding up queries.
effective_cache_size
Informs the planner of available cache, improving query execution plans by reducing disk reads.
maintenance_work_mem
More memory here speeds up vacuum and index rebuilding, improving database upkeep.
checkpoint_completion_target
Spreads checkpoint activity to reduce I/O spikes, smoother performance during heavy loads.
wal_buffers
Larger buffers improve write performance by reducing disk writes for WAL logs.
default_statistics_target
Better statistics improve query planning, leading to more efficient execution strategies.
random_page_cost
Lowering this value can speed up queries that rely on index scans by reducing cost of random I/O.

APPENDIX: PostgreSQL params. for tuning (cont.)

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 53

effective_io_concurrency
Higher values allow more concurrent I/O operations, improving performance on SSDs.
work_mem
Allocating more memory per query operation reduces disk sorting, improving query execution speed.
huge_pages
Using larger memory pages reduces overhead for large memory allocations, improving memory performance.
min_wal_size
A higher value reduces the frequency of WAL file recycling, improving write performance.
max_wal_size
Increases WAL retention, reducing checkpoint frequency, and improving write-intensive performance.
max_worker_processes
More worker processes enable background jobs to run concurrently, boosting throughput.
max_parallel_workers_per_gather
Increases the number of workers for parallel queries, speeding up large data retrievals.
max_parallel_workers
Controls the total number of parallel workers across all queries, improving overall parallel query performance.
max_parallel_maintenance_workers
Allows more workers for maintenance tasks like vacuuming, improving maintenance efficiency.

APPENDIX: LEON postgres.conf

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 54

For PostgreSQL configuration see: leon-postgres.conf

APPENDIX: Balsa postgres.conf

5. November 2024 | SwissPUG AI/ML-Driven Query Optimization Using Balsa and LEON | Stefan Keller 55

For PostgreSQL Config see: balsa-postgres.conf

	Standardabschnitt
	Folie 1: AI/ML-Driven Query Optimization Using Balsa and LEON
	Folie 2: AI/ML-Driven Query Optimization Using Balsa and LEON
	Folie 3: Content Overview
	Folie 4: This Presentation …
	Folie 5: The Problem
	Folie 6: The Need and the Opportunities

	What is Optimization and Tuning in Databases?
	Folie 7: 1. What is Optimization and Tuning in Databases?
	Folie 8: What is optimization and tuning in Databases?
	Folie 9: What are tuning options in PG?
	Folie 10: What can be tuned in PostgreSQL?
	Folie 11: What can be tuned in PostgreSQL?
	Folie 12: What can be tuned in PostgreSQL?
	Folie 13: Views, modules and extensions

	Optimization and Tuning Tools for PostgreSQL
	Folie 14: 2. Optimization and Tuning Tools for PostgreSQL
	Folie 15: Tuning tools for PostgreSQL («.com»)
	Folie 16: Tuning tools for PostgreSQL (FOSS)
	Folie 17: Tuning tools for PostgreSQL (FOSS): Draft evaluation
	Folie 18: Optimization tools for PostgreSQL (FOSS)
	Folie 19: Optimization tools for PostgreSQL (FOSS): Draft evaluation
	Folie 20: Tuning and query optimization goals and respective open source tool availability

	Query Optimization
	Folie 21: 3. Introduction to Query Optimization
	Folie 22: What are Query Optimizers and where they are used?
	Folie 23: What are Query Optimizers and where they are used? (cont.)
	Folie 24: How the Query Optimizer Works
	Folie 25: How the Query Optimizer Works
	Folie 26: Generating Candidate Execution Plans
	Folie 27: Assessing the Cost of Each Plan
	Folie 28: Query Execution and Plan Caching
	Folie 29: Hinting

	BALSA and LEON
	Folie 30: 4. LEON and Balsa
	Folie 31: LEON
	Folie 32: BALSA
	Folie 33: Where Balsa comes in?
	Folie 34: Where LEON comes in?
	Folie 35: Balsa Core Concept
	Folie 36: Balsa Core Concept (cont.)
	Folie 37: Balsa Core Concept (cont.)
	Folie 38: Balsa Core Concept (cont.)
	Folie 39: Balsa Core Concept (cont. - fin)
	Folie 40: LEON Core Concept
	Folie 41: LEON Core Concept (cont.)
	Folie 42: LEON Core Concept (cont.)
	Folie 43: LEON Core Concept (cont.)
	Folie 44: LEON Core Concept (cont.)
	Folie 45: LEON Core Concept (cont.)
	Folie 46: LEON Core Concept (cont.)
	Folie 47: 5. Comparison and Outlook
	Folie 48: Comparison: Balsa vs. LEON
	Folie 49: Are AI/ML-based Optimizers a Solution?
	Folie 50: Evolution of Query Optimization

	Discussion and Appendices
	Folie 51: Discussion
	Folie 52: APPENDIX: PostgreSQL params. for tuning
	Folie 53: APPENDIX: PostgreSQL params. for tuning (cont.)
	Folie 54: APPENDIX: LEON postgres.conf
	Folie 55: APPENDIX: Balsa postgres.conf

